Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonparametric Tests of Conditional Independence for Time Series

Published 10 Oct 2021 in econ.EM | (2110.04847v1)

Abstract: We propose consistent nonparametric tests of conditional independence for time series data. Our methods are motivated from the difference between joint conditional cumulative distribution function (CDF) and the product of conditional CDFs. The difference is transformed into a proper conditional moment restriction (CMR), which forms the basis for our testing procedure. Our test statistics are then constructed using the integrated moment restrictions that are equivalent to the CMR. We establish the asymptotic behavior of the test statistics under the null, the alternative, and the sequence of local alternatives converging to conditional independence at the parametric rate. Our tests are implemented with the assistance of a multiplier bootstrap. Monte Carlo simulations are conducted to evaluate the finite sample performance of the proposed tests. We apply our tests to examine the predictability of equity risk premium using variance risk premium for different horizons and find that there exist various degrees of nonlinear predictability at mid-run and long-run horizons.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.