Primordial black holes from bubble collisions during a first-order phase transition (2110.04271v4)
Abstract: We study the possibility of production of primordial black holes (PBHs) from bubble collisions during a first-order phase transition. While typical colliding bubbles are small and irrelevant for PBH production, we find that those that can produce PBHs must have a macroscopically thick fluid shell and have been born much before the typical nucleation time. Particularly large uncertainties arise from an exponential sensitivity of the nucleation rate on the required duration of bubble growth which depends on the details of the collisions and the evolution of the spacetime metric toward the end of the phase transition. We introduce a few parameters to be obtained from future numerical simulation to represent those unknowns, and estimate the PBH abundance in an Abelian Higgs benchmark model and show that it can be significant. We predict an approximately monochromatic PBH mass spectrum, and find regions in the parameter space where the PBHs can constitute entire dark matter or even over-close the universe. Our result thus shows that models with a first-order phase transition can be constrained by over-abundant PBHs or null results of other PBH searches.
- D. Chway, T. H. Jung, and C. S. Shin, “Dark matter filtering-out effect during a first-order phase transition,” Phys. Rev. D 101 no. 9, (2020) 095019, arXiv:1912.04238 [hep-ph].
- M. J. Baker, J. Kopp, and A. J. Long, “Filtered Dark Matter at a First Order Phase Transition,” Phys. Rev. Lett. 125 no. 15, (2020) 151102, arXiv:1912.02830 [hep-ph].
- M. Ahmadvand, “Filtered asymmetric dark matter during the Peccei-Quinn phase transition,” arXiv:2108.00958 [hep-ph].
- J.-P. Hong, S. Jung, and K.-P. Xie, “Fermi-ball dark matter from a first-order phase transition,” Phys. Rev. D 102 no. 7, (2020) 075028, arXiv:2008.04430 [hep-ph].
- A. Azatov, M. Vanvlasselaer, and W. Yin, “Dark Matter production from relativistic bubble walls,” JHEP 03 (2021) 288, arXiv:2101.05721 [hep-ph].
- P. Asadi, E. D. Kramer, E. Kuflik, G. W. Ridgway, T. R. Slatyer, and J. Smirnov, “Thermal Squeezeout of Dark Matter,” arXiv:2103.09827 [hep-ph].
- M. E. Shaposhnikov, “Baryon Asymmetry of the Universe in Standard Electroweak Theory,” Nucl. Phys. B 287 (1987) 757–775.
- J. M. Cline, “TASI Lectures on Early Universe Cosmology: Inflation, Baryogenesis and Dark Matter,” PoS TASI2018 (2019) 001, arXiv:1807.08749 [hep-ph].
- E. Hall, T. Konstandin, R. McGehee, H. Murayama, and G. Servant, “Baryogenesis From a Dark First-Order Phase Transition,” JHEP 04 (2020) 042, arXiv:1910.08068 [hep-ph].
- K. Fujikura, K. Harigaya, Y. Nakai, and R. Wang, “Electroweak-like Baryogenesis with New Chiral Matter,” arXiv:2103.05005 [hep-ph].
- J. Arakawa, A. Rajaraman, and T. M. P. Tait, “Annihilogenesis,” arXiv:2109.13941 [hep-ph].
- A. Azatov, M. Vanvlasselaer, and W. Yin, “Baryogenesis via relativistic bubble walls,” JHEP 10 (2021) 043, arXiv:2106.14913 [hep-ph].
- E. Witten, “Cosmic Separation of Phases,” Phys. Rev. D 30 (1984) 272–285.
- C. J. Hogan, “Gravitational radiation from cosmological phase transitions,” Mon. Not. Roy. Astron. Soc. 218 (1986) 629–636.
- A. Kosowsky, M. S. Turner, and R. Watkins, “Gravitational radiation from colliding vacuum bubbles,” Phys. Rev. D 45 (1992) 4514–4535.
- A. Kosowsky and M. S. Turner, “Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions,” Phys. Rev. D 47 (1993) 4372–4391, arXiv:astro-ph/9211004.
- M. Kamionkowski, A. Kosowsky, and M. S. Turner, “Gravitational radiation from first order phase transitions,” Phys. Rev. D 49 (1994) 2837–2851, arXiv:astro-ph/9310044.
- J. R. Espinosa, T. Konstandin, J. M. No, and G. Servant, “Energy Budget of Cosmological First-order Phase Transitions,” JCAP 06 (2010) 028, arXiv:1004.4187 [hep-ph].
- C. Caprini et al., “Detecting gravitational waves from cosmological phase transitions with LISA: an update,” JCAP 03 (2020) 024, arXiv:1910.13125 [astro-ph.CO].
- K. Schmitz, “New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions,” JHEP 01 (2021) 097, arXiv:2002.04615 [hep-ph].
- LIGO Scientific Collaboration, G. M. Harry, “Advanced LIGO: The next generation of gravitational wave detectors,” Class. Quant. Grav. 27 (2010) 084006.
- LIGO Scientific Collaboration, J. Aasi et al., “Advanced LIGO,” Class. Quant. Grav. 32 (2015) 074001, arXiv:1411.4547 [gr-qc].
- VIRGO Collaboration, F. Acernese et al., “Advanced Virgo: a second-generation interferometric gravitational wave detector,” Class. Quant. Grav. 32 no. 2, (2015) 024001, arXiv:1408.3978 [gr-qc].
- LISA Collaboration, P. Amaro-Seoane et al., “Laser Interferometer Space Antenna,” arXiv:1702.00786 [astro-ph.IM].
- J. Baker et al., “The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky,” arXiv:1907.06482 [astro-ph.IM].
- N. Seto, S. Kawamura, and T. Nakamura, “Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space,” Phys. Rev. Lett. 87 (2001) 221103, arXiv:astro-ph/0108011.
- S. Kawamura et al., “The Japanese space gravitational wave antenna: DECIGO,” Class. Quant. Grav. 28 (2011) 094011.
- K. Yagi and N. Seto, “Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries,” Phys. Rev. D 83 (2011) 044011, arXiv:1101.3940 [astro-ph.CO]. [Erratum: Phys.Rev.D 95, 109901 (2017)].
- S. Isoyama, H. Nakano, and T. Nakamura, “Multiband Gravitational-Wave Astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO,” PTEP 2018 no. 7, (2018) 073E01, arXiv:1802.06977 [gr-qc].
- J. Crowder and N. J. Cornish, “Beyond LISA: Exploring future gravitational wave missions,” Phys. Rev. D 72 (2005) 083005, arXiv:gr-qc/0506015.
- V. Corbin and N. J. Cornish, “Detecting the cosmic gravitational wave background with the big bang observer,” Class. Quant. Grav. 23 (2006) 2435–2446, arXiv:gr-qc/0512039.
- G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner, and E. S. Phinney, “Laser interferometry for the big bang observer,” Class. Quant. Grav. 23 (2006) 4887–4894. [Erratum: Class.Quant.Grav. 23, 7361 (2006)].
- KAGRA Collaboration, K. Somiya, “Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector,” Class. Quant. Grav. 29 (2012) 124007, arXiv:1111.7185 [gr-qc].
- KAGRA Collaboration, Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88 no. 4, (2013) 043007, arXiv:1306.6747 [gr-qc].
- KAGRA Collaboration, T. Akutsu et al., “KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector,” Nature Astron. 3 no. 1, (2019) 35–40, arXiv:1811.08079 [gr-qc].
- KAGRA Collaboration, T. Akutsu et al., “First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA,” Class. Quant. Grav. 36 no. 16, (2019) 165008, arXiv:1901.03569 [astro-ph.IM].
- Y. Michimura et al., “Prospects for improving the sensitivity of KAGRA gravitational wave detector,” in 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories. 6, 2019. arXiv:1906.02866 [gr-qc].
- LIGO Scientific Collaboration, B. P. Abbott et al., “Exploring the Sensitivity of Next Generation Gravitational Wave Detectors,” Class. Quant. Grav. 34 no. 4, (2017) 044001, arXiv:1607.08697 [astro-ph.IM].
- D. Reitze et al., “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO,” Bull. Am. Astron. Soc. 51 no. 7, (2019) 035, arXiv:1907.04833 [astro-ph.IM].
- M. Punturo et al., “The Einstein Telescope: A third-generation gravitational wave observatory,” Class. Quant. Grav. 27 (2010) 194002.
- S. Hild et al., “Sensitivity Studies for Third-Generation Gravitational Wave Observatories,” Class. Quant. Grav. 28 (2011) 094013, arXiv:1012.0908 [gr-qc].
- B. Sathyaprakash et al., “Scientific Objectives of Einstein Telescope,” Class. Quant. Grav. 29 (2012) 124013, arXiv:1206.0331 [gr-qc]. [Erratum: Class.Quant.Grav. 30, 079501 (2013)].
- M. Maggiore et al., “Science Case for the Einstein Telescope,” JCAP 03 (2020) 050, arXiv:1912.02622 [astro-ph.CO].
- S. Burke-Spolaor et al., “The Astrophysics of Nanohertz Gravitational Waves,” Astron. Astrophys. Rev. 27 no. 1, (2019) 5, arXiv:1811.08826 [astro-ph.HE].
- M. A. McLaughlin, “The North American Nanohertz Observatory for Gravitational Waves,” Class. Quant. Grav. 30 (2013) 224008, arXiv:1310.0758 [astro-ph.IM].
- NANOGRAV Collaboration, Z. Arzoumanian et al., “The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background,” Astrophys. J. 859 no. 1, (2018) 47, arXiv:1801.02617 [astro-ph.HE].
- K. Aggarwal et al., “The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. 880 (2019) 2, arXiv:1812.11585 [astro-ph.GA].
- A. Brazier et al., “The NANOGrav Program for Gravitational Waves and Fundamental Physics,” arXiv:1908.05356 [astro-ph.IM].
- R. N. Manchester et al., “The Parkes Pulsar Timing Array Project,” Publ. Astron. Soc. Austral. 30 (2013) 17, arXiv:1210.6130 [astro-ph.IM].
- R. M. Shannon et al., “Gravitational waves from binary supermassive black holes missing in pulsar observations,” Science 349 no. 6255, (2015) 1522–1525, arXiv:1509.07320 [astro-ph.CO].
- M. Kramer and D. J. Champion, “The European Pulsar Timing Array and the Large European Array for Pulsars,” Class. Quant. Grav. 30 (2013) 224009.
- L. Lentati et al., “European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background,” Mon. Not. Roy. Astron. Soc. 453 no. 3, (2015) 2576–2598, arXiv:1504.03692 [astro-ph.CO].
- S. Babak et al., “European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries,” Mon. Not. Roy. Astron. Soc. 455 no. 2, (2016) 1665–1679, arXiv:1509.02165 [astro-ph.CO].
- G. Hobbs et al., “The international pulsar timing array project: using pulsars as a gravitational wave detector,” Class. Quant. Grav. 27 (2010) 084013, arXiv:0911.5206 [astro-ph.SR].
- R. N. Manchester, “The International Pulsar Timing Array,” Class. Quant. Grav. 30 (2013) 224010, arXiv:1309.7392 [astro-ph.IM].
- J. P. W. Verbiest et al., “The International Pulsar Timing Array: First Data Release,” Mon. Not. Roy. Astron. Soc. 458 no. 2, (2016) 1267–1288, arXiv:1602.03640 [astro-ph.IM].
- J. S. Hazboun, C. M. F. Mingarelli, and K. Lee, “The Second International Pulsar Timing Array Mock Data Challenge,” arXiv:1810.10527 [astro-ph.IM].
- C. L. Carilli and S. Rawlings, “Science with the Square Kilometer Array: Motivation, key science projects, standards and assumptions,” New Astron. Rev. 48 (2004) 979, arXiv:astro-ph/0409274.
- G. Janssen et al., “Gravitational wave astronomy with the SKA,” PoS AASKA14 (2015) 037, arXiv:1501.00127 [astro-ph.IM].
- A. Weltman et al., “Fundamental physics with the Square Kilometre Array,” Publ. Astron. Soc. Austral. 37 (2020) e002, arXiv:1810.02680 [astro-ph.CO].
- B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on Primordial Black Holes,” arXiv:2002.12778 [astro-ph.CO].
- B. Carr and F. Kuhnel, “Primordial Black Holes as Dark Matter: Recent Developments,” Ann. Rev. Nucl. Part. Sci. 70 (2020) 355–394, arXiv:2006.02838 [astro-ph.CO].
- G. F. Marani, R. J. Nemiroff, J. P. Norris, K. Hurley, and J. T. Bonnell, “Gravitationally lensed gamma-ray bursts as probes of dark compact objects,” Astrophys. J. Lett. 512 (1999) L13, arXiv:astro-ph/9810391.
- R. J. Nemiroff, G. F. Marani, J. P. Norris, and J. T. Bonnell, “Limits on the cosmological abundance of supermassive compact objects from a millilensing search in gamma-ray burst data,” Phys. Rev. Lett. 86 (2001) 580, arXiv:astro-ph/0101488.
- A. Barnacka, J. F. Glicenstein, and R. Moderski, “New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts,” Phys. Rev. D 86 (2012) 043001, arXiv:1204.2056 [astro-ph.CO].
- A. Katz, J. Kopp, S. Sibiryakov, and W. Xue, “Femtolensing by Dark Matter Revisited,” JCAP 12 (2018) 005, arXiv:1807.11495 [astro-ph.CO].
- K. Griest, A. M. Cieplak, and M. J. Lehner, “New Limits on Primordial Black Hole Dark Matter from an Analysis of Kepler Source Microlensing Data,” Phys. Rev. Lett. 111 no. 18, (2013) 181302.
- K. Griest, A. M. Cieplak, and M. J. Lehner, “Experimental Limits on Primordial Black Hole Dark Matter from the First 2 yr of Kepler Data,” Astrophys. J. 786 no. 2, (2014) 158, arXiv:1307.5798 [astro-ph.CO].
- H. Niikura et al., “Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations,” Nature Astron. 3 no. 6, (2019) 524–534, arXiv:1701.02151 [astro-ph.CO].
- B. Paczynski, “Gravitational microlensing by the galactic halo,” Astrophys. J. 304 (1986) 1–5.
- C. Hamadache et al., “Galactic bulge microlensing optical depth from eros-2,” Astron. Astrophys. 454 (2006) 185–199, arXiv:astro-ph/0601510.
- L. Wyrzykowski et al., “The OGLE View of Microlensing towards the Magellanic Clouds. I. A Trickle of Events in the OGLE-II LMC data,” Mon. Not. Roy. Astron. Soc. 397 (2009) 1228–1242, arXiv:0905.2044 [astro-ph.GA].
- S. Calchi Novati, L. Mancini, G. Scarpetta, and L. Wyrzykowski, “LMC self lensing for OGLE-II microlensing observations,” Mon. Not. Roy. Astron. Soc. 400 (2009) 1625, arXiv:0908.3836 [astro-ph.GA].
- L. Wyrzykowski et al., “The OGLE View of Microlensing towards the Magellanic Clouds. II. OGLE-II SMC data,” Mon. Not. Roy. Astron. Soc. 407 (2010) 189–200, arXiv:1004.5247 [astro-ph.GA].
- L. Wyrzykowski et al., “The OGLE View of Microlensing towards the Magellanic Clouds. III. Ruling out sub-solar MACHOs with the OGLE-III LMC data,” Mon. Not. Roy. Astron. Soc. 413 (2011) 493, arXiv:1012.1154 [astro-ph.GA].
- L. Wyrzykowski et al., “The OGLE View of Microlensing towards the Magellanic Clouds. IV. OGLE-III SMC Data and Final Conclusions on MACHOs,” Mon. Not. Roy. Astron. Soc. 416 (2011) 2949, arXiv:1106.2925 [astro-ph.GA].
- H. Niikura, M. Takada, S. Yokoyama, T. Sumi, and S. Masaki, “Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events,” Phys. Rev. D 99 no. 8, (2019) 083503, arXiv:1901.07120 [astro-ph.CO].
- M. Zumalacarregui and U. Seljak, “Limits on stellar-mass compact objects as dark matter from gravitational lensing of type Ia supernovae,” Phys. Rev. Lett. 121 no. 14, (2018) 141101, arXiv:1712.02240 [astro-ph.CO].
- J. Garcia-Bellido, S. Clesse, and P. Fleury, “Primordial black holes survive SN lensing constraints,” Phys. Dark Univ. 20 (2018) 95–100, arXiv:1712.06574 [astro-ph.CO].
- D. N. Page and S. W. Hawking, “Gamma rays from primordial black holes,” Astrophys. J. 206 (1976) 1–7.
- B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “New cosmological constraints on primordial black holes,” Phys. Rev. D 81 (2010) 104019, arXiv:0912.5297 [astro-ph.CO].
- B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black holes from the Galactic gamma-ray background,” Phys. Rev. D 94 no. 4, (2016) 044029, arXiv:1604.05349 [astro-ph.CO].
- M. Boudaud and M. Cirelli, “Voyager 1 e±superscript𝑒plus-or-minuse^{\pm}italic_e start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT Further Constrain Primordial Black Holes as Dark Matter,” Phys. Rev. Lett. 122 no. 4, (2019) 041104, arXiv:1807.03075 [astro-ph.HE].
- W. DeRocco and P. W. Graham, “Constraining Primordial Black Hole Abundance with the Galactic 511 keV Line,” Phys. Rev. Lett. 123 no. 25, (2019) 251102, arXiv:1906.07740 [astro-ph.CO].
- R. Laha, “Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ𝛾\gammaitalic_γ -Ray Line,” Phys. Rev. Lett. 123 no. 25, (2019) 251101, arXiv:1906.09994 [astro-ph.HE].
- B. Dasgupta, R. Laha, and A. Ray, “Neutrino and positron constraints on spinning primordial black hole dark matter,” Phys. Rev. Lett. 125 no. 10, (2020) 101101, arXiv:1912.01014 [hep-ph].
- R. Laha, J. B. Muñoz, and T. R. Slatyer, “INTEGRAL constraints on primordial black holes and particle dark matter,” Phys. Rev. D 101 no. 12, (2020) 123514, arXiv:2004.00627 [astro-ph.CO].
- M. H. Chan and C. M. Lee, “Constraining Primordial Black Hole Fraction at the Galactic Centre using radio observational data,” Mon. Not. Roy. Astron. Soc. 497 no. 1, (2020) 1212–1216, arXiv:2007.05677 [astro-ph.HE].
- K. M. Belotsky and A. A. Kirillov, “Primordial black holes with mass 1016−1017superscript1016superscript101710^{16}-10^{17}10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT g and reionization of the Universe,” JCAP 01 (2015) 041, arXiv:1409.8601 [astro-ph.CO].
- H. Kim, “A constraint on light primordial black holes from the interstellar medium temperature,” arXiv:2007.07739 [hep-ph].
- S. W. Hawking, I. G. Moss, and J. M. Stewart, “Bubble Collisions in the Very Early Universe,” Phys. Rev. D 26 (1982) 2681.
- K. Sato, M. Sasaki, H. Kodama, and K.-i. Maeda, “Creation of Wormholes by First Order Phase Transition of a Vacuum in the Early Universe,” Prog. Theor. Phys. 65 (1981) 1443.
- K.-i. Maeda, K. Sato, M. Sasaki, and H. Kodama, “Creation of De Sitter-schwarzschild Wormholes by a Cosmological First Order Phase Transition,” Phys. Lett. B 108 (1982) 98–102.
- H. Kodama, M. Sasaki, and K. Sato, “Abundance of Primordial Holes Produced by Cosmological First Order Phase Transition,” Prog. Theor. Phys. 68 (1982) 1979.
- L. J. Hall and S. Hsu, “Cosmological Production of Black Holes,” Phys. Rev. Lett. 64 (1990) 2848–2851.
- A. Kusenko, M. Sasaki, S. Sugiyama, M. Takada, V. Takhistov, and E. Vitagliano, “Exploring Primordial Black Holes from the Multiverse with Optical Telescopes,” Phys. Rev. Lett. 125 (2020) 181304, arXiv:2001.09160 [astro-ph.CO].
- M. Y. Khlopov, R. V. Konoplich, S. G. Rubin, and A. S. Sakharov, “First order phase transitions as a source of black holes in the early universe,” Grav. Cosmol. 2 (1999) S1, arXiv:hep-ph/9912422.
- M. Lewicki and V. Vaskonen, “On bubble collisions in strongly supercooled phase transitions,” Phys. Dark Univ. 30 (2020) 100672, arXiv:1912.00997 [astro-ph.CO].
- C. Gross, G. Landini, A. Strumia, and D. Teresi, “Dark Matter as dark dwarfs and other macroscopic objects: multiverse relics?,” JHEP 09 (2021) 033, arXiv:2105.02840 [hep-ph].
- M. J. Baker, M. Breitbach, J. Kopp, and L. Mittnacht, “Primordial Black Holes from First-Order Cosmological Phase Transitions,” arXiv:2105.07481 [astro-ph.CO].
- K. Kawana and K.-P. Xie, “Primordial black holes from a cosmic phase transition: The collapse of Fermi-balls,” Phys. Lett. B 824 (2022) 136791, arXiv:2106.00111 [astro-ph.CO].
- M. J. Baker, M. Breitbach, J. Kopp, and L. Mittnacht, “Detailed Calculation of Primordial Black Hole Formation During First-Order Cosmological Phase Transitions,” arXiv:2110.00005 [astro-ph.CO].
- J. Liu, L. Bian, R.-G. Cai, Z.-K. Guo, and S.-J. Wang, “Primordial black hole production during first-order phase transitions,” Phys. Rev. D 105 no. 2, (2022) L021303, arXiv:2106.05637 [astro-ph.CO].
- K. Hashino, S. Kanemura, and T. Takahashi, “Primordial black holes as a probe of strongly first-order electroweak phase transition,” Phys. Lett. B 833 (2022) 137261, arXiv:2111.13099 [hep-ph].
- P. Huang and K.-P. Xie, “Primordial black holes from an electroweak phase transition,” Phys. Rev. D 105 no. 11, (2022) 115033, arXiv:2201.07243 [hep-ph].
- V. De Luca, G. Franciolini, and A. Riotto, “Heavy Primordial Black Holes from Strongly Clustered Light Black Holes,” Phys. Rev. Lett. 130 no. 17, (2023) 171401, arXiv:2210.14171 [astro-ph.CO].
- K. Kawana, T. Kim, and P. Lu, “PBH formation from overdensities in delayed vacuum transitions,” Phys. Rev. D 108 no. 10, (2023) 103531, arXiv:2212.14037 [astro-ph.CO].
- M. Lewicki, P. Toczek, and V. Vaskonen, “Primordial black holes from strong first-order phase transitions,” JHEP 09 (2023) 092, arXiv:2305.04924 [astro-ph.CO].
- Y. Gouttenoire and T. Volansky, “Primordial Black Holes from Supercooled Phase Transitions,” arXiv:2305.04942 [hep-ph].
- R. Jinno, J. Kume, and M. Yamada, “Super-slow phase transition catalyzed by BHs and the birth of baby BHs,” arXiv:2310.06901 [hep-ph].
- K. S. Thorne, “Nonspherical gravitational collapse: A short review,” in Magic Without Magic: John Archibald Wheeler, J. Klauder, ed., p. 231. Freeman, San Francisco, 1972.
- W. E. East and F. Pretorius, “Ultrarelativistic black hole formation,” Phys. Rev. Lett. 110 no. 10, (2013) 101101, arXiv:1210.0443 [gr-qc].
- W.-Y. Ai, “Logarithmically divergent friction on ultrarelativistic bubble walls,” arXiv:2308.10679 [hep-ph].
- D. Bodeker and G. D. Moore, “Electroweak Bubble Wall Speed Limit,” JCAP 05 (2017) 025, arXiv:1703.08215 [hep-ph].
- S. Höche, J. Kozaczuk, A. J. Long, J. Turner, and Y. Wang, “Towards an all-orders calculation of the electroweak bubble wall velocity,” JCAP 03 (2021) 009, arXiv:2007.10343 [hep-ph].
- Y. Gouttenoire, R. Jinno, and F. Sala, “Friction pressure on relativistic bubble walls,” JHEP 05 (2022) 004, arXiv:2112.07686 [hep-ph].
- A. Azatov, G. Barni, R. Petrossian-Byrne, and M. Vanvlasselaer, “Quantisation Across Bubble Walls and Friction,” arXiv:2310.06972 [hep-ph].
- M. S. Turner, E. J. Weinberg, and L. M. Widrow, “Bubble nucleation in first order inflation and other cosmological phase transitions,” Phys. Rev. D 46 (1992) 2384–2403.
- S. W. Hawking, “Black hole explosions,” Nature 248 (1974) 30–31.
- S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975) 199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].
- A. Coogan, L. Morrison, and S. Profumo, “Direct Detection of Hawking Radiation from Asteroid-Mass Primordial Black Holes,” Phys. Rev. Lett. 126 no. 17, (2021) 171101, arXiv:2010.04797 [astro-ph.CO].
- A. Ray, R. Laha, J. B. Muñoz, and R. Caputo, “Near future MeV telescopes can discover asteroid-mass primordial black hole dark matter,” Phys. Rev. D 104 no. 2, (2021) 023516, arXiv:2102.06714 [astro-ph.CO].
- D. Ghosh, D. Sachdeva, and P. Singh, “Future Constraints on Primordial Black Holes from XGIS-THESEUS,” arXiv:2110.03333 [astro-ph.CO].
- S. D. Hunter et al., “A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry,” Astropart. Phys. 59 (2014) 18–28, arXiv:1311.2059 [astro-ph.IM].
- AMEGO Collaboration, R. Caputo et al., “All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe,” arXiv:1907.07558 [astro-ph.IM].
- e-ASTROGAM Collaboration, M. Tavani et al., “Science with e-ASTROGAM: A space mission for MeV–GeV gamma-ray astrophysics,” JHEAp 19 (2018) 1–106, arXiv:1711.01265 [astro-ph.HE].
- A. Moiseev, S. Profumo, A. Coogan, and L. Morrison, “Snowmass 2021 Letter of Interest: Searching for Dark Matter and New Physics with GECCO, 2020,”. https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF3_CF1_Stefano_Profumo-007.pdf.
- T. Dzhatdoev and E. Podlesnyi, “Massive Argon Space Telescope (MAST): A concept of heavy time projection chamber for γ𝛾\gammaitalic_γ-ray astronomy in the 100 MeV–1 TeV energy range,” Astropart. Phys. 112 (2019) 1–7, arXiv:1902.01491 [astro-ph.HE].
- X. Wu, M. Su, A. Bravar, J. Chang, Y. Fan, M. Pohl, and R. Walter, “PANGU: A High Resolution Gamma-ray Space Telescope,” Proc. SPIE Int. Soc. Opt. Eng. 9144 (2014) 91440F, arXiv:1407.0710 [astro-ph.IM].
- T. Aramaki, P. Hansson Adrian, G. Karagiorgi, and H. Odaka, “Dual MeV Gamma-Ray and Dark Matter Observatory - GRAMS Project,” Astropart. Phys. 114 (2020) 107–114, arXiv:1901.03430 [astro-ph.HE].
- C. Labanti et al., “The X/Gamma-ray Imaging Spectrometer (XGIS) on-board THESEUS: design, main characteristics, and concept of operation,” in SPIE Astronomical Telescopes + Instrumentation 2020. 2, 2021. arXiv:2102.08701 [astro-ph.IM].
- THESEUS Consortium Collaboration, L. Amati et al., “The THESEUS space mission: science goals, requirements and mission concept,” arXiv:2104.09531 [astro-ph.IM].
- C. L. Wainwright, “CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields,” Comput. Phys. Commun. 183 (2012) 2006–2013, arXiv:1109.4189 [hep-ph].
- J. Ellis, M. Lewicki, and J. M. No, “On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal,” JCAP 04 (2019) 003, arXiv:1809.08242 [hep-ph].
- M. Lewicki, O. Pujolàs, and V. Vaskonen, “Escape from supercooling with or without bubbles: gravitational wave signatures,” Eur. Phys. J. C 81 no. 9, (2021) 857, arXiv:2106.09706 [astro-ph.CO].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.