Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unsupervised Image Decomposition with Phase-Correlation Networks

Published 7 Oct 2021 in cs.CV and cs.LG | (2110.03473v3)

Abstract: The ability to decompose scenes into their object components is a desired property for autonomous agents, allowing them to reason and act in their surroundings. Recently, different methods have been proposed to learn object-centric representations from data in an unsupervised manner. These methods often rely on latent representations learned by deep neural networks, hence requiring high computational costs and large amounts of curated data. Such models are also difficult to interpret. To address these challenges, we propose the Phase-Correlation Decomposition Network (PCDNet), a novel model that decomposes a scene into its object components, which are represented as transformed versions of a set of learned object prototypes. The core building block in PCDNet is the Phase-Correlation Cell (PC Cell), which exploits the frequency-domain representation of the images in order to estimate the transformation between an object prototype and its transformed version in the image. In our experiments, we show how PCDNet outperforms state-of-the-art methods for unsupervised object discovery and segmentation on simple benchmark datasets and on more challenging data, while using a small number of learnable parameters and being fully interpretable.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.