Papers
Topics
Authors
Recent
2000 character limit reached

Learning Pessimism for Robust and Efficient Off-Policy Reinforcement Learning (2110.03375v2)

Published 7 Oct 2021 in cs.LG and cs.AI

Abstract: Off-policy deep reinforcement learning algorithms commonly compensate for overestimation bias during temporal-difference learning by utilizing pessimistic estimates of the expected target returns. In this work, we propose Generalized Pessimism Learning (GPL), a strategy employing a novel learnable penalty to enact such pessimism. In particular, we propose to learn this penalty alongside the critic with dual TD-learning, a new procedure to estimate and minimize the magnitude of the target returns bias with trivial computational cost. GPL enables us to accurately counteract overestimation bias throughout training without incurring the downsides of overly pessimistic targets. By integrating GPL with popular off-policy algorithms, we achieve state-of-the-art results in both competitive proprioceptive and pixel-based benchmarks.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.