Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers (2110.02965v3)
Abstract: Quantum process tomography is a powerful tool for understanding quantum channels and characterizing properties of quantum devices. Inspired by recent advances using classical shadows in quantum state tomography [H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).], we have developed ShadowQPT, a classical shadow method for quantum process tomography. We introduce two related formulations with and without ancilla qubits. ShadowQPT stochastically reconstructs the Choi matrix of the device allowing for an a-posteri classical evaluation of the device on arbitrary inputs with respect to arbitrary outputs. Using shadows we then show how to compute overlaps, generate all $k$-weight reduced processes, and perform reconstruction via Hamiltonian learning. These latter two tasks are efficient for large systems as the number of quantum measurements needed scales only logarithmically with the number of qubits. A number of additional approximations and improvements are developed including the use of a pair-factorized Clifford shadow and a series of post-processing techniques which significantly enhance the accuracy for recovering the quantum channel. We have implemented ShadowQPT using both Pauli and Clifford measurements on the IonQ trapped ion quantum computer for quantum processes up to $n=4$ qubits and achieved good performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.