Papers
Topics
Authors
Recent
2000 character limit reached

$O\left(1/T\right)$ Time-Average Convergence in a Generalization of Multiagent Zero-Sum Games

Published 6 Oct 2021 in cs.GT and cs.MA | (2110.02482v1)

Abstract: We introduce a generalization of zero-sum network multiagent matrix games and prove that alternating gradient descent converges to the set of Nash equilibria at rate $O(1/T)$ for this set of games. Alternating gradient descent obtains this convergence guarantee while using fixed learning rates that are four times larger than the optimistic variant of gradient descent. Experimentally, we show with 97.5% confidence that, on average, these larger learning rates result in time-averaged strategies that are 2.585 times closer to the set of Nash equilibria than optimistic gradient descent.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.