Papers
Topics
Authors
Recent
Search
2000 character limit reached

Effective Bounds for the Decay of Schrödinger Eigenfunctions and Agmon bubbles

Published 4 Oct 2021 in math.AP, math-ph, math.MP, and math.SP | (2110.01163v1)

Abstract: We study solutions of $-\Delta u + V u = \lambda u$ on $\mathbb{R}n$. Such solutions localize in the allowed' region $\left\{x \in \mathbb{R}^n: V(x) \leq \lambda\right\}$ and decay exponentially in theforbidden' region $\left{x \in \mathbb{R}n: V(x) > \lambda\right}$. One way of making this precise is Agmon's inequality implying decay estimates in terms of the Agmon metric. We prove a complementary decay estimate in terms of harmonic measure which can improve on Agmon's estimate, connect the Agmon metric to decay of harmonic measure and prove a sharp pointwise Agmon estimate.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.