Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast algorithm to identify cluster synchrony through fibration symmetries in large information-processing networks (2110.01096v2)

Published 3 Oct 2021 in q-bio.MN and cs.CC

Abstract: Recent studies revealed an important interplay between the detailed structure of fibration symmetric circuits and the functionality of biological and non-biological networks within which they have be identified. The presence of these circuits in complex networks are directed related to the phenomenon of cluster synchronization, which produces patterns of synchronized group of nodes. Here we present a fast, and memory efficient, algorithm to identify fibration symmetries over information-processing networks. This algorithm is specially suitable for large and sparse networks since it has runtime of complexity $O(M\log N)$ and requires $O(M+N)$ of memory resources, where $N$ and $M$ are the number of nodes and edges in the network, respectively. We propose a modification on the so-called refinement paradigm to identify circuits symmetrical to information flow (i.e., fibers) by finding the coarsest refinement partition over the network. Finally, we show that the presented algorithm provides an optimal procedure for identifying fibers, overcoming the current approaches used in the literature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.