Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Urban Mobility Restrictions: a Multi-Agent System (MAS) for SARS-CoV-2 (2110.01006v1)

Published 3 Oct 2021 in physics.soc-ph and cs.MA

Abstract: Infectious epidemics can be simulated by employing dynamical processes as interactions on network structures. Here, we introduce techniques from the Multi-Agent System (MAS) domain in order to account for individual level characterization of societal dynamics for the SARS-CoV-2 pandemic. We hypothesize that a MAS model which considers rich spatial demographics, hourly mobility data and daily contagion information from the metropolitan area of Toronto can explain significant emerging behavior. To investigate this hypothesis we designed, with our modeling framework of choice, GAMA, an accurate environment which can be tuned to reproduce mobility and healthcare data, in our case coming from TomTom's API and Toronto's Open Data. We observed that some interesting contagion phenomena are directly influenced by mobility restrictions and curfew policies. We conclude that while our model is able to reproduce non-trivial emerging properties, large-scale simulation are needed to further investigate the role of different parameters. Finally, providing such an end-to-end model can be critical for policy-makers to compare their outcomes with past strategies in order to devise better plans for future measures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Simone Azeglio (9 papers)
  2. Matteo Fordiani (1 paper)