Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stochastic Graph-based Model for the Simulation of SARS-CoV-2 Transmission (2111.05802v1)

Published 10 Nov 2021 in physics.soc-ph and cs.CY

Abstract: In this work we propose the design principles of a stochastic graph-based model for the simulation of SARS-CoV-2 transmission. The proposed approach incorporates three sub-models, namely, the spatial model, the mobility model, and the propagation model, in order to develop a realistic environment for the study of the properties exhibited by the spread of SARS-CoV-2. The spatial model converts images of real cities taken from Google Maps into undirected weighted graphs that capture the spatial arrangement of the streets utilized next for the mobility of individuals. The mobility model implements a stochastic agent-based approach, developed in order to assign specific routes to individuals moving in the city, through the use of stochastic processes, utilizing the weights of the underlying graph to deploy shortest path algorithms. The propagation model implements both the epidemiological model and the physical substance of the transmission of an airborne virus considering the transmission parameters of SARS-CoV-2. Finally, we integrate these sub-models in order to derive an integrated framework for the study of the epidemic dynamics exhibited through the transmission of SARS-CoV-2.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Christos Chondros (2 papers)
  2. Stavros D. Nikolopoulos (17 papers)
  3. Iosif Polenakis (6 papers)
Citations (1)