Papers
Topics
Authors
Recent
2000 character limit reached

Crash Severity Pattern of Motorcycle Crashes in Developing Country Context (2110.00381v2)

Published 19 Sep 2021 in stat.AP

Abstract: Despite paying special attention to the motorcycle-involved crashes in the safety research, little is known about their pattern and impacts in developing countries. The widespread adoption of motorcycles in such regions in tandem with the vulnerability of motorcyclists exacerbates the likelihood of severe crashes. The main objective of this paper is to investigate the underlying factors contributing to the severity of motorcycle-involved crashes through employing crash data from March 2018 to March 2019 from Iran. Considering the ordinal nature of three injury classes of property-damage-only (PDO), injury, and fatal crashes in our data, an ordered logistic regression model is employed to address the problem. The data statistics suggest that motorcycle is responsible for 38% of injury and 15% of all fatal crashes in the dataset. The results indicate that significant factors contributing to more severe crashes include collision, road, temporal, and motorcycle rider characteristics. Among all attributes, our model is most sensitive to the motorcycle-pedestrian accident, which increases the probability of belonging a crash into injury and fatal crashes by 0.289 and 0.019, respectively. Moreover, we discovered a significant degree of correlation between young riders and riders without a license. Finally, upon the insights obtained from the results, we propose safety countermeasures, including 1) strict traffic rule enforcement upon riders and pedestrians, 2) educational programs, and 3) road-specific adjustment policies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.