Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bernstein-Sato theory for singular rings in positive characteristic (2110.00129v2)

Published 30 Sep 2021 in math.AC and math.AG

Abstract: The Bernstein-Sato polynomial is an important invariant of an element or an ideal in a polynomial ring or power series ring of characteristic zero, with interesting connections to various algebraic and topological aspects of the singularities of the vanishing locus. Work of Musta\c{t}\u{a}, later extended by Bitoun and the third author, provides an analogous Bernstein-Sato theory for regular rings of positive characteristic. In this paper, we extend this theory to singular ambient rings in positive characteristic. We establish finiteness and rationality results for Bernstein-Sato roots for large classes of singular rings, and relate these roots to other classes of numerical invariants defined via the Frobenius map. We also obtain a number of new results and simplified arguments in the regular case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube