Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Topological characterizations of Morse-Smale flows on surfaces and generic non-Morse-Smale flows (2109.14662v1)

Published 29 Sep 2021 in math.DS

Abstract: It is known that $Cr$ Morse-Smale vector fields form an open dense subset in the space of vector fields on orientable closed surfaces and are structurally stable for any $r \in \mathbb{Z}_{>0}$. In particular, $Cr$ Morse vector fields (i.e. Morse-Smale vector fields without limit cycles) form an open dense subset in the space of $Cr$ gradient vector fields on orientable closed surfaces and are structurally stable. Therefore generic time evaluations of gradient flows on orientable closed surfaces (e.g. solutions of differential equations) are described by alternating sequences of Morse flows and instantaneous non-Morse gradient flows. To illustrate the generic transitions, we characterize and list all generic non-Morse gradient flows. To construct such characterizations, we characterize isolated singular points of gradient flows on surfaces. In fact, such a singular point is a non-trivial finitely sectored singular point without elliptic sectors. Moreover, considering Morse-Smale flows as "generic gradient flows with limit cycles", we characterize and list all generic non-Morse-Smale flows.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube