Improving Dialogue State Tracking by Joint Slot Modeling (2109.14144v2)
Abstract: Dialogue state tracking models play an important role in a task-oriented dialogue system. However, most of them model the slot types conditionally independently given the input. We discover that it may cause the model to be confused by slot types that share the same data type. To mitigate this issue, we propose TripPy-MRF and TripPy-LSTM that models the slots jointly. Our results show that they are able to alleviate the confusion mentioned above, and they push the state-of-the-art on dataset MultiWoZ 2.1 from 58.7 to 61.3. Our implementation is available at https://github.com/CTinRay/Trippy-Joint.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.