2000 character limit reached
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message (2109.13158v1)
Published 27 Sep 2021 in cs.CR and cs.DS
Abstract: The shuffle model of differential privacy has attracted attention in the literature due to it being a middle ground between the well-studied central and local models. In this work, we study the problem of summing (aggregating) real numbers or integers, a basic primitive in numerous machine learning tasks, in the shuffle model. We give a protocol achieving error arbitrarily close to that of the (Discrete) Laplace mechanism in the central model, while each user only sends $1 + o(1)$ short messages in expectation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.