Papers
Topics
Authors
Recent
2000 character limit reached

Language Invariant Properties in Natural Language Processing

Published 27 Sep 2021 in cs.CL | (2109.13037v2)

Abstract: Meaning is context-dependent, but many properties of language (should) remain the same even if we transform the context. For example, sentiment, entailment, or speaker properties should be the same in a translation and original of a text. We introduce language invariant properties: i.e., properties that should not change when we transform text, and how they can be used to quantitatively evaluate the robustness of transformation algorithms. We use translation and paraphrasing as transformation examples, but our findings apply more broadly to any transformation. Our results indicate that many NLP transformations change properties like author characteristics, i.e., make them sound more male. We believe that studying these properties will allow NLP to address both social factors and pragmatic aspects of language. We also release an application suite that can be used to evaluate the invariance of transformation applications.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.