Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The geometric field of linearity of linear sets (2109.12749v1)

Published 27 Sep 2021 in math.CO

Abstract: If an Fq-linear set LU in a projective space is defined by a vector subspace U which is linear over a proper superfield of Fq, then all of its points have weight at least 2. It is known that the converse of this statement holds for linear sets of rank h in PG(1,qh) but for linear sets of rank k < h, the converse of this statement is in general no longer true. The first part of this paper studies the relation between the weights of points and the size of a linear set, and introduces the concept of the geometric field of linearity of a linear set. This notion will allow us to show the main theorem, stating that for particular linear sets without points of weight 1, the converse of the above statement still holds as long as we take the geometric field of linearity into account.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.