Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Solution to the ghost problem in higher-derivative gravity (2109.12743v1)

Published 27 Sep 2021 in hep-th

Abstract: With standard Einstein gravity not being renormalizable at the quantum level there is much interest in studying higher-derivative quantum gravity theories. Thus just as a Ricci-scalar-based action produces a propagator that behaves as a non-renormalizable $1/k2$ at large $k2$, an action based on the square of the Ricci scalar behaves as a renormalizable $1/k4$ at large $k2$. An action based on both the Ricci scalar and its square leads to a renormalizable propagator of the generic Pauli-Villars form. However, given the form of the Hamiltonian and the propagator such theories are thought to be plagued by either energies that are unbounded from below or states of negative Dirac norm (the overlap of a ket with its Hermitian conjugate bra). But when one constructs the quantum Hilbert space one finds (Bender and Mannheim) that in fact neither of these problems is actually present. The Hamiltonian turns out to not be Hermitian but to instead have an antilinear $PT$ symmetry, and for this symmetry the needed inner product is the overlap of a ket with its $PT$ conjugate bra. And this inner product is positive definite. Moreover, for the pure $1/k4$ propagator the Hamiltonian turns out to not be diagonalizable, and again there are no states of negative energy or of negative norm. Instead there are states of zero norm, non-standard but perfectly acceptable states that serve to maintain probability conservation. With the locally conformal invariant fourth-order derivative conformal gravity theory being in this category, it can be offered as a candidate theory of quantum gravity that is renormalizable and unitary in four spacetime dimensions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube