2000 character limit reached
Training dataset generation for bridge game registration
Published 24 Sep 2021 in cs.CV, cs.LG, and eess.IV | (2109.11861v1)
Abstract: This paper presents a method for automatic generation of a training dataset for a deep convolutional neural network used for playing card detection. The solution allows to skip the time-consuming processes of manual image collecting and labelling recognised objects. The YOLOv4 network trained on the generated dataset achieved an efficiency of 99.8% in the cards detection task. The proposed method is a part of a project that aims to automate the process of broadcasting duplicate bridge competitions using a vision system and neural networks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.