Papers
Topics
Authors
Recent
Search
2000 character limit reached

Smoothing splines approximation using Hilbert curve basis selection

Published 24 Sep 2021 in stat.ME | (2109.11727v2)

Abstract: Smoothing splines have been used pervasively in nonparametric regressions. However, the computational burden of smoothing splines is significant when the sample size $n$ is large. When the number of predictors $d\geq2$, the computational cost for smoothing splines is at the order of $O(n3)$ using the standard approach. Many methods have been developed to approximate smoothing spline estimators by using $q$ basis functions instead of $n$ ones, resulting in a computational cost of the order $O(nq2)$. These methods are called the basis selection methods. Despite algorithmic benefits, most of the basis selection methods require the assumption that the sample is uniformly-distributed on a hyper-cube. These methods may have deteriorating performance when such an assumption is not met. To overcome the obstacle, we develop an efficient algorithm that is adaptive to the unknown probability density function of the predictors. Theoretically, we show the proposed estimator has the same convergence rate as the full-basis estimator when $q$ is roughly at the order of $O[n{2d/{(pr+1)(d+2)}}\quad]$, where $p\in[1,2]$ and $r\approx 4$ are some constants depend on the type of the spline. Numerical studies on various synthetic datasets demonstrate the superior performance of the proposed estimator in comparison with mainstream competitors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.