Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Accessibility-Based Clustering for Efficient Learning of Locomotion Skills (2109.11191v3)

Published 23 Sep 2021 in cs.RO

Abstract: For model-free deep reinforcement learning of quadruped locomotion, the initialization of robot configurations is crucial for data efficiency and robustness. This work focuses on algorithmic improvements of data efficiency and robustness simultaneously through automatic discovery of initial states, which is achieved by our proposed K-Access algorithm based on accessibility metrics. Specifically, we formulated accessibility metrics to measure the difficulty of transitions between two arbitrary states, and proposed a novel K-Access algorithm for state-space clustering that automatically discovers the centroids of the static-pose clusters based on the accessibility metrics. By using the discovered centroidal static poses as the initial states, we can improve data efficiency by reducing redundant explorations, and enhance the robustness by more effective explorations from the centroids to sampled poses. Focusing on fall recovery as a very hard set of locomotion skills, we validated our method extensively using an 8-DoF quadrupedal robot Bittle. Compared to the baselines, the learning curve of our method converges much faster, requiring only 60% of training episodes. With our method, the robot can successfully recover to standing poses within 3 seconds in 99.4% of the test cases. Moreover, the method can generalize to other difficult skills successfully, such as backflipping.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com