Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Small-Bench NLP: Benchmark for small single GPU trained models in Natural Language Processing (2109.10847v2)

Published 22 Sep 2021 in cs.LG and cs.CL

Abstract: Recent progress in the Natural Language Processing domain has given us several State-of-the-Art (SOTA) pretrained models which can be finetuned for specific tasks. These large models with billions of parameters trained on numerous GPUs/TPUs over weeks are leading in the benchmark leaderboards. In this paper, we discuss the need for a benchmark for cost and time effective smaller models trained on a single GPU. This will enable researchers with resource constraints experiment with novel and innovative ideas on tokenization, pretraining tasks, architecture, fine tuning methods etc. We set up Small-Bench NLP, a benchmark for small efficient neural LLMs trained on a single GPU. Small-Bench NLP benchmark comprises of eight NLP tasks on the publicly available GLUE datasets and a leaderboard to track the progress of the community. Our ELECTRA-DeBERTa (15M parameters) small model architecture achieves an average score of 81.53 which is comparable to that of BERT-Base's 82.20 (110M parameters). Our models, code and leaderboard are available at https://github.com/smallbenchnlp

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.