Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computing Complexity-aware Plans Using Kolmogorov Complexity (2109.10303v2)

Published 21 Sep 2021 in eess.SY, cs.AI, cs.SY, and math.OC

Abstract: In this paper, we introduce complexity-aware planning for finite-horizon deterministic finite automata with rewards as outputs, based on Kolmogorov complexity. Kolmogorov complexity is considered since it can detect computational regularities of deterministic optimal policies. We present a planning objective yielding an explicit trade-off between a policy's performance and complexity. It is proven that maximising this objective is non-trivial in the sense that dynamic programming is infeasible. We present two algorithms obtaining low-complexity policies, where the first algorithm obtains a low-complexity optimal policy, and the second algorithm finds a policy maximising performance while maintaining local (stage-wise) complexity constraints. We evaluate the algorithms on a simple navigation task for a mobile robot, where our algorithms yield low-complexity policies that concur with intuition.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.