Papers
Topics
Authors
Recent
2000 character limit reached

Identifying biases in legal data: An algorithmic fairness perspective (2109.09946v1)

Published 21 Sep 2021 in cs.CY, cs.AI, cs.LG, and stat.ML

Abstract: The need to address representation biases and sentencing disparities in legal case data has long been recognized. Here, we study the problem of identifying and measuring biases in large-scale legal case data from an algorithmic fairness perspective. Our approach utilizes two regression models: A baseline that represents the decisions of a "typical" judge as given by the data and a "fair" judge that applies one of three fairness concepts. Comparing the decisions of the "typical" judge and the "fair" judge allows for quantifying biases across demographic groups, as we demonstrate in four case studies on criminal data from Cook County (Illinois).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.