Papers
Topics
Authors
Recent
2000 character limit reached

Neural forecasting at scale

Published 20 Sep 2021 in cs.LG, cs.DC, cs.NE, and stat.ML | (2109.09705v4)

Abstract: We study the problem of efficiently scaling ensemble-based deep neural networks for multi-step time series (TS) forecasting on a large set of time series. Current state-of-the-art deep ensemble models have high memory and computational requirements, hampering their use to forecast millions of TS in practical scenarios. We propose N-BEATS(P), a global parallel variant of the N-BEATS model designed to allow simultaneous training of multiple univariate TS forecasting models. Our model addresses the practical limitations of related models, reducing the training time by half and memory requirement by a factor of 5, while keeping the same level of accuracy in all TS forecasting settings. We have performed multiple experiments detailing the various ways to train our model and have obtained results that demonstrate its capacity to generalize in various forecasting conditions and setups.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.