Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Context Shadow Detection using Shadow Removal (2109.09609v2)

Published 20 Sep 2021 in cs.CV

Abstract: Current shadow detection methods perform poorly when detecting shadow regions that are small, unclear or have blurry edges. In this work, we attempt to address this problem on two fronts. First, we propose a Fine Context-aware Shadow Detection Network (FCSD-Net), where we constraint the receptive field size and focus on low-level features to learn fine context features better. Second, we propose a new learning strategy, called Restore to Detect (R2D), where we show that when a deep neural network is trained for restoration (shadow removal), it learns meaningful features to delineate the shadow masks as well. To make use of this complementary nature of shadow detection and removal tasks, we train an auxiliary network for shadow removal and propose a complementary feature learning block (CFL) to learn and fuse meaningful features from shadow removal network to the shadow detection network. We train the proposed network, FCSD-Net, using the R2D learning strategy across multiple datasets. Experimental results on three public shadow detection datasets (ISTD, SBU and UCF) show that our method improves the shadow detection performance while being able to detect fine context better compared to the other recent methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.