Papers
Topics
Authors
Recent
2000 character limit reached

Test Martingales for bounded random variables

Published 18 Sep 2021 in stat.ME | (2109.08923v1)

Abstract: Given a positive random variable $X$, $X\ge0$ a.s., a null hypothesis $H_0:E(X)\le\mu$ and a random sample of infinite size of $X$, we construct test supermartingales for $H_0$, i.e. positive processes that are supermartingale if the null hypothesis is satisfied. We test hypothesis $H_0$ by testing the supermartingale hypothesis on a test supermartingale. We construct test supermartingales that lead to tests with power 1. We derive confidence lower bounds. For bounded random variables we extend the techniques to two-sided tests of $H_0:E(X)=\mu$ and to the construction of confidence intervals. In financial auditing random sampling is proposed as one of the possible techniques to gather enough evidence to justify rejection of the null hypothesis that there is a 'material' misstatement in a financial report. The goal of our work is to provide a mathematical context that could represent such process of gathering evidence by means of repeated random sampling, while ensuring an intended significance level.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.