BERT-Beta: A Proactive Probabilistic Approach to Text Moderation (2109.08805v1)
Abstract: Text moderation for user generated content, which helps to promote healthy interaction among users, has been widely studied and many machine learning models have been proposed. In this work, we explore an alternative perspective by augmenting reactive reviews with proactive forecasting. Specifically, we propose a new concept {\it text toxicity propensity} to characterize the extent to which a text tends to attract toxic comments. Beta regression is then introduced to do the probabilistic modeling, which is demonstrated to function well in comprehensive experiments. We also propose an explanation method to communicate the model decision clearly. Both propensity scoring and interpretation benefit text moderation in a novel manner. Finally, the proposed scaling mechanism for the linear model offers useful insights beyond this work.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.