Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-terminal memristive devices enabling tunable synaptic plasticity in neuromorphic hardware: a mini-review

Published 17 Sep 2021 in physics.app-ph and cs.ET | (2109.08720v1)

Abstract: Neuromorphic computing based on spiking neural networks has the potential to significantly improve on-line learning capabilities and energy efficiency of artificial intelligence, specially for edge computing. Recent progress in computational neuroscience have demonstrated the importance of heterosynaptic plasticity for network activity regulation and memorization. Implementing heterosynaptic plasticity in hardware is thus highly desirable, but important materials and engineering challenges remain, calling for breakthroughs in neuromorphic devices. In this mini-review, we propose an overview of the latest advances in multi-terminal memristive devices on silicon with tunable synaptic plasticity, enabling heterosynaptic plasticity in hardware. The scalability and compatibility of the devices with industrial complementary metal oxide semiconductor (CMOS) technologies are discussed.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.