Papers
Topics
Authors
Recent
2000 character limit reached

DeepGhostBusters: Using Mask R-CNN to Detect and Mask Ghosting and Scattered-Light Artifacts from Optical Survey Images (2109.08246v1)

Published 16 Sep 2021 in astro-ph.IM and astro-ph.GA

Abstract: Wide-field astronomical surveys are often affected by the presence of undesirable reflections (often known as "ghosting artifacts" or "ghosts") and scattered-light artifacts. The identification and mitigation of these artifacts is important for rigorous astronomical analyses of faint and low-surface-brightness systems. However, the identification of ghosts and scattered-light artifacts is challenging due to a) the complex morphology of these features and b) the large data volume of current and near-future surveys. In this work, we use images from the Dark Energy Survey (DES) to train, validate, and test a deep neural network (Mask R-CNN) to detect and localize ghosts and scattered-light artifacts. We find that the ability of the Mask R-CNN model to identify affected regions is superior to that of conventional algorithms and traditional convolutional neural networks methods. We propose that a multi-step pipeline combining Mask R-CNN segmentation with a classical CNN classifier provides a powerful technique for the automated detection of ghosting and scattered-light artifacts in current and near-future surveys.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.