Policy Choice and Best Arm Identification: Asymptotic Analysis of Exploration Sampling (2109.08229v5)
Abstract: We consider the "policy choice" problem -- otherwise known as best arm identification in the bandit literature -- proposed by Kasy and Sautmann (2021) for adaptive experimental design. Theorem 1 of Kasy and Sautmann (2021) provides three asymptotic results that give theoretical guarantees for exploration sampling developed for this setting. We first show that the proof of Theorem 1 (1) has technical issues, and the proof and statement of Theorem 1 (2) are incorrect. We then show, through a counterexample, that Theorem 1 (3) is false. For the former two, we correct the statements and provide rigorous proofs. For Theorem 1 (3), we propose an alternative objective function, which we call posterior weighted policy regret, and derive the asymptotic optimality of exploration sampling.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.