Papers
Topics
Authors
Recent
Search
2000 character limit reached

The number of limit cycles for regularized piecewise polynomial systems is unbounded

Published 16 Sep 2021 in math.DS | (2109.07759v2)

Abstract: In this paper, we extend the slow divergence-integral from slow-fast systems, due to De Maesschalck, Dumortier and Roussarie, to smooth systems that limit onto piecewise smooth ones as $\epsilon\rightarrow 0$. In slow-fast systems, the slow divergence-integral is an integral of the divergence along a canard cycle with respect to the slow time and it has proven very useful in obtaining good lower and upper bounds of limit cycles in planar polynomial systems. In this paper, our slow divergence-integral is based upon integration along a generalized canard cycle for a piecewise smooth two-fold bifurcation (of type visible-invisible called $VI_3$). We use this framework to show that the number of limit cycles in regularized piecewise smooth polynomial systems is unbounded.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.