2000 character limit reached
Lyapunov exponents for truncated unitary and Ginibre matrices
Published 15 Sep 2021 in math.PR, math-ph, and math.MP | (2109.07375v2)
Abstract: In this note, we show that the Lyapunov exponents of mixed products of random truncated Haar unitary and complex Ginibre matrices are asymptotically given by equally spaced `picket-fence' statistics. We discuss how these statistics should originate from the connection between random matrix products and multiplicative Brownian motion on $\operatorname{GL}_n(\mathbb{C})$, analogous to the connection between discrete random walks and ordinary Brownian motion. Our methods are based on contour integral formulas for products of classical matrix ensembles from integrable probability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.