Papers
Topics
Authors
Recent
2000 character limit reached

RGB-D Saliency Detection via Cascaded Mutual Information Minimization (2109.07246v2)

Published 15 Sep 2021 in cs.CV

Abstract: Existing RGB-D saliency detection models do not explicitly encourage RGB and depth to achieve effective multi-modal learning. In this paper, we introduce a novel multi-stage cascaded learning framework via mutual information minimization to "explicitly" model the multi-modal information between RGB image and depth data. Specifically, we first map the feature of each mode to a lower dimensional feature vector, and adopt mutual information minimization as a regularizer to reduce the redundancy between appearance features from RGB and geometric features from depth. We then perform multi-stage cascaded learning to impose the mutual information minimization constraint at every stage of the network. Extensive experiments on benchmark RGB-D saliency datasets illustrate the effectiveness of our framework. Further, to prosper the development of this field, we contribute the largest (7x larger than NJU2K) dataset, which contains 15,625 image pairs with high quality polygon-/scribble-/object-/instance-/rank-level annotations. Based on these rich labels, we additionally construct four new benchmarks with strong baselines and observe some interesting phenomena, which can motivate future model design. Source code and dataset are available at "https://github.com/JingZhang617/cascaded_rgbd_sod".

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.