Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

α-Indirect Control in Onion-like Networks (2109.07181v2)

Published 15 Sep 2021 in physics.soc-ph and cs.DS

Abstract: Tens of thousands of parent companies control millions of subsidiaries through long chains of intermediary entities in global corporate networks. Conversely, tens of millions of entities are directly held by sole owners. We propose an algorithm for identification of ultimate controlling entities in such networks that unifies direct and indirect control and allows for continuous interpolation between the two concepts via a factor damping long paths. By exploiting onion-like properties of ownership networks the algorithm scales linearly with the network size and handles circular ownership by design. We apply it to the universe of 4.2 mln UK companies and 4 mln of their holders to understand the distribution of control in the country. Furthermore, we provide the first independent evaluation of the control identification results. We reveal that the proposed $\alpha$-ICON algorithm identifies more than 96% of beneficiary entities from the evaluation set and supersedes the existing approaches reported in the literature. We refer the superiority of $\alpha$-ICON algorithm to its ability to correctly identify the parents long away from their subsidiaries in the network.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.