Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Learning to Match Job Candidates Using Multilingual Bi-Encoder BERT (2109.07157v1)

Published 15 Sep 2021 in cs.CL and cs.IR

Abstract: In this talk, we will show how we used Randstad history of candidate placements to generate labeled CV-vacancy pairs dataset. Afterwards we fine-tune a multilingual BERT with bi encoder structure over this dataset, by adding a cosine similarity log loss layer. We will explain how using the mentioned structure helps us overcome most of the challenges described above, and how it enables us to build a maintainable and scalable pipeline to match CVs and vacancies. In addition, we show how we gain a better semantic understanding, and learn to bridge the vocabulary gap. Finally, we highlight how multilingual transformers help us handle cross language barrier and might reduce discrimination.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)