Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monotone Complexity of Spanning Tree Polynomial Re-visited (2109.06941v1)

Published 14 Sep 2021 in cs.CC

Abstract: We prove two results that shed new light on the monotone complexity of the spanning tree polynomial, a classic polynomial in algebraic complexity and beyond. First, we show that the spanning tree polynomials having $n$ variables and defined over constant-degree expander graphs, have monotone arithmetic complexity $2{\Omega(n)}$. This yields the first strongly exponential lower bound on the monotone arithmetic circuit complexity for a polynomial in VP. Before this result, strongly exponential size monotone lower bounds were known only for explicit polynomials in VNP (Gashkov-Sergeev'12, Raz-Yehudayoff'11, Srinivasan'20, Cavalar-Kumar-Rossman'20, Hrubes-Yehudayoff'21). Recently, Hrubes'20 initiated a program to prove lower bounds against general arithmetic circuits by proving $\epsilon$-sensitive lower bounds for monotone arithmetic circuits for a specific range of values for $\epsilon \in (0,1)$. We consider the spanning tree polynomial $ST_{n}$ defined over the complete graph on $n$ vertices and show that the polynomials $F_{n-1,n} - \epsilon \cdot ST_{n}$ and $F_{n-1,n} + \epsilon \cdot ST_{n}$ defined over $n2$ variables, have monotone circuit complexity $2{\Omega(n)}$ if $\epsilon \geq 2{-\Omega(n)}$ and $F_{n-1,n} = \prod_{i=2}n (x_{i,1} +\cdots + x_{i,n})$ is the complete set-multilinear polynomial. This provides the first $\epsilon$-sensitive exponential lower bound for a family of polynomials inside VP. En-route, we consider a problem in 2-party, best partition communication complexity of deciding whether two sets of oriented edges distributed among Alice and Bob form a spanning tree or not. We prove that there exists a fixed distribution, under which the problem has low discrepancy with respect to every nearly-balanced partition. This result could be of interest beyond algebraic complexity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.