Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Super-Polynomial Size Lower Bounds for Depth-Two Threshold Circuits (1805.10698v1)

Published 27 May 2018 in cs.CC

Abstract: Proving super-polynomial size lower bounds for $\textsf{TC}0$, the class of constant-depth, polynomial-size circuits of Majority gates, is a notorious open problem in complexity theory. A major frontier is to prove that $\textsf{NEXP}$ does not have poly-size $\textsf{THR} \circ \textsf{THR}$ circuit (depth-two circuits with linear threshold gates). In recent years, R.~Williams proposed a program to prove circuit lower bounds via improved algorithms. In this paper, following Williams' framework, we show that the above frontier question can be resolved by devising slightly faster algorithms for several fundamental problems: 1. Shaving Logs for $\textsf{$\ell_2$-Furthest-Pair}$. An $n2 \textrm{poly}(d) / \log{\omega(1)} n$ time algorithm for $\textsf{$\ell_2$-Furthest-Pair}$ in $\mathbb{R}d$ for polylogarithmic $d$ implies $\textsf{NEXP}$ has no polynomial size $\textsf{THR} \circ \textsf{THR}$ circuits. The same holds for Hopcroft's problem, $\textsf{Bichrom.-$\ell_2$-Closest-Pair}$ and Integer $\textsf{Max-IP}$. 2. Shaving Logs for Approximate $\textsf{Bichrom.-$\ell_2$-Closest-Pair}$. An $n2 \textrm(d) / \log{\omega(1)} n$ time algorithm for $(1+1/\log{\omega(1)} n)$-approximation to $\textsf{Bichrom.-$\ell_2$-Closest-Pair}$ or $\textsf{Bichrom.-$\ell_1$-Closest-Pair}$ for polylogarithmic $d$ implies $\textsf{NEXP}$ has no polynomial size $\textsf{SYM}\circ\textsf{THR}$ circuits. 3. Shaving Logs for Modest Dimension Boolean $\textsf{Max-IP}$. An $n2 / \log{\omega(1)} n$ time algorithm for Bichromatic Maximum Inner Product with vector dimension $d = n\epsilon$ for any small constant $\epsilon$ would imply $\textsf{NEXP}$ has no polynomial size $\textsf{THR} \circ \textsf{THR}$ circuits. Note there is an $n2\textrm{polylog}(n)$ time algorithm via fast rectangle matrix multiplication. Our results build on two structure lemmas for threshold circuits.

Citations (9)

Summary

We haven't generated a summary for this paper yet.