Papers
Topics
Authors
Recent
2000 character limit reached

Effective Scenarios in Multistage Distributionally Robust Optimization with a Focus on Total Variation Distance (2109.06791v1)

Published 14 Sep 2021 in math.OC

Abstract: We study multistage distributionally robust optimization (DRO) to hedge against ambiguity in quantifying the underlying uncertainty of a problem. Recognizing that not all the realizations and scenario paths might have an "effect" on the optimal value, we investigate the question of how to define and identify critical scenarios for nested multistage DRO problems. Our analysis extends the work of Rahimian, Bayraksan, and Homem-de-Mello [Math. Program. 173(1--2): 393--430, 2019], which was in the context of a static/two-stage setting, to the multistage setting. To this end, we define the notions of effectiveness of scenario paths and the conditional effectiveness of realizations along a scenario path for a general class of multistage DRO problems. We then propose easy-to-check conditions to identify the effectiveness of scenario paths in the multistage setting when the distributional ambiguity is modeled via the total variation distance. Numerical results show that these notions provide useful insight on the underlying uncertainty of the problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.