Designing Multi-Stage Coupled Convex Programming with Data-Driven McCormick Envelope Relaxations for Motion Planning (2109.06516v1)
Abstract: For multi-limbed robots, motion planning with posture and force constraints tends to be a difficult optimization problem due to nonlinearities, which also present extended solve times. We propose a multi-stage optimization framework with data-driven inter-stage coupling constraints to address the nonlinearity. Both clustering and evolutionary approaches to find the McCormick envelope relaxations are used to find the problem-specific parameters. The learned constraints are then used in the prior stages, which provides advanced knowledge of the following stages. This leads to improved solve times and interpretability of the results. The planner is validated through multiple walking and climbing tasks on a 10 kg hexapod robot.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.