Papers
Topics
Authors
Recent
2000 character limit reached

Designing Multi-Stage Coupled Convex Programming with Data-Driven McCormick Envelope Relaxations for Motion Planning (2109.06516v1)

Published 14 Sep 2021 in cs.RO

Abstract: For multi-limbed robots, motion planning with posture and force constraints tends to be a difficult optimization problem due to nonlinearities, which also present extended solve times. We propose a multi-stage optimization framework with data-driven inter-stage coupling constraints to address the nonlinearity. Both clustering and evolutionary approaches to find the McCormick envelope relaxations are used to find the problem-specific parameters. The learned constraints are then used in the prior stages, which provides advanced knowledge of the following stages. This leads to improved solve times and interpretability of the results. The planner is validated through multiple walking and climbing tasks on a 10 kg hexapod robot.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.