Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Estimating a new panel MSK dataset for comparative analyses of national absorptive capacity systems, economic growth, and development in low and middle income economies (2109.05529v1)

Published 12 Sep 2021 in econ.EM, stat.AP, and stat.ML

Abstract: Within the national innovation system literature, empirical analyses are severely lacking for developing economies. Particularly, the low- and middle-income countries (LMICs) eligible for the World Bank's International Development Association (IDA) support, are rarely part of any empirical discourse on growth, development, and innovation. One major issue hindering panel analyses in LMICs, and thus them being subject to any empirical discussion, is the lack of complete data availability. This work offers a new complete panel dataset with no missing values for LMICs eligible for IDA's support. I use a standard, widely respected multiple imputation technique (specifically, Predictive Mean Matching) developed by Rubin (1987). This technique respects the structure of multivariate continuous panel data at the country level. I employ this technique to create a large dataset consisting of many variables drawn from publicly available established sources. These variables, in turn, capture six crucial country-level capacities: technological capacity, financial capacity, human capital capacity, infrastructural capacity, public policy capacity, and social capacity. Such capacities are part and parcel of the National Absorptive Capacity Systems (NACS). The dataset (MSK dataset) thus produced contains data on 47 variables for 82 LMICs between 2005 and 2019. The dataset has passed a quality and reliability check and can thus be used for comparative analyses of national absorptive capacities and development, transition, and convergence analyses among LMICs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.