Papers
Topics
Authors
Recent
2000 character limit reached

Constrained Toda hierarchy and turning points of the Ruijsenaars-Schneider model

Published 11 Sep 2021 in nlin.SI, math-ph, and math.MP | (2109.05240v3)

Abstract: We introduce a new integrable hierarchy of nonlinear differential-difference equations which we call constrained Toda hierarchy (C-Toda). It can be regarded as a certain subhierarchy of the 2D Toda lattice obtained by imposing the constraint $\bar {\cal L}={\cal L}{\dag}$ on the two Lax operators (in the symmetric gauge). We prove the existence of the tau-function of the C-Toda hierarchy and show that it is the square root of the 2D Toda lattice tau-function. In this and some other respects the C-Toda is a Toda analogue of the CKP hierarchy. It is also shown that zeros of the tau-function of elliptic solutions satisfy the dynamical equations of the Ruijsenaars-Schneider model restricted to turning points in the phase space. The spectral curve has holomorphic involution which interchange the marked points in which the Baker-Akhiezer function has essential singularities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.