Papers
Topics
Authors
Recent
2000 character limit reached

Poincaré series for modular graph forms at depth two. II. Iterated integrals of cusp forms

Published 10 Sep 2021 in hep-th and math.NT | (2109.05018v3)

Abstract: We continue the analysis of modular invariant functions, subject to inhomogeneous Laplace eigenvalue equations, that were determined in terms of Poincar\'e series in a companion paper. The source term of the Laplace equation is a product of (derivatives of) two non-holomorphic Eisenstein series whence the modular invariants are assigned depth two. These modular invariant functions can sometimes be expressed in terms of single-valued iterated integrals of holomorphic Eisenstein series as they appear in generating series of modular graph forms. We show that the set of iterated integrals of Eisenstein series has to be extended to include also iterated integrals of holomorphic cusp forms to find expressions for all modular invariant functions of depth two. The coefficients of these cusp forms are identified as ratios of their L-values inside and outside the critical strip.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.