Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Notes on Krasnoselskii-type fixed-point theorems and their application to fractional hybrid differential problems (2108.13182v1)

Published 8 Aug 2021 in math.CA and math.FA

Abstract: In this paper we prove a new version of Kransoselskii's fixed-point theorem under a ($\psi, \theta, \varphi$)-weak contraction condition. The theoretical result is applied to prove the existence of a solution of the following fractional hybrid differential equation involving the Riemann-Liouville differential and integral operators orders of $0<\alpha<1$ and $\beta>0:$ \begin{equation}\nonumber \left{\begin{array}{ll} D{\alpha}[x(t)-f(t, x(t))]=g(t, x(t), I{\beta}(x(t))), \,\,\, \text{a.e.} \,\,\, t\in J,\,\, \beta>0,\ x(t_{0})=x_{0}, \end{array} \right. \end{equation} where $D{\alpha}$ is the Riemann-Liouville fractional derivative order of $\alpha,$ $I{\beta}$ is Riemann-Liouville fractional integral operator order of $\beta>0,$ $J=[t_{0}, t_{0}+a],$ for some fixed $t_{0}\in \mathbb{R},$ $a>0$ and the functions $f:J\times \mathbb{R}\rightarrow \mathbb{R}$ and $g:J\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R}$ satisfy certain conditions. An example is also furnished to illustrate the hypotheses and the abstract result of this paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.