Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why Adversarial Reprogramming Works, When It Fails, and How to Tell the Difference (2108.11673v3)

Published 26 Aug 2021 in cs.LG

Abstract: Adversarial reprogramming allows repurposing a machine-learning model to perform a different task. For example, a model trained to recognize animals can be reprogrammed to recognize digits by embedding an adversarial program in the digit images provided as input. Recent work has shown that adversarial reprogramming may not only be used to abuse machine-learning models provided as a service, but also beneficially, to improve transfer learning when training data is scarce. However, the factors affecting its success are still largely unexplained. In this work, we develop a first-order linear model of adversarial reprogramming to show that its success inherently depends on the size of the average input gradient, which grows when input gradients are more aligned, and when inputs have higher dimensionality. The results of our experimental analysis, involving fourteen distinct reprogramming tasks, show that the above factors are correlated with the success and the failure of adversarial reprogramming.

Citations (18)

Summary

We haven't generated a summary for this paper yet.