Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cross-modal Adversarial Reprogramming

Published 15 Feb 2021 in cs.AI and cs.LG | (2102.07325v3)

Abstract: With the abundance of large-scale deep learning models, it has become possible to repurpose pre-trained networks for new tasks. Recent works on adversarial reprogramming have shown that it is possible to repurpose neural networks for alternate tasks without modifying the network architecture or parameters. However these works only consider original and target tasks within the same data domain. In this work, we broaden the scope of adversarial reprogramming beyond the data modality of the original task. We analyze the feasibility of adversarially repurposing image classification neural networks for NLP and other sequence classification tasks. We design an efficient adversarial program that maps a sequence of discrete tokens into an image which can be classified to the desired class by an image classification model. We demonstrate that by using highly efficient adversarial programs, we can reprogram image classifiers to achieve competitive performance on a variety of text and sequence classification benchmarks without retraining the network.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.