A second order difference scheme for time fractional diffusion equation with generalized memory kernel
Abstract: In the current work we build a difference analog of the Caputo fractional derivative with generalized memory kernel ($\lambda$L2-1$\sigma$ formula). The fundamental features of this difference operator are studied and on its ground some difference schemes generating approximations of the second order in time for the generalized time-fractional diffusion equation with variable coefficients are worked out. We have proved stability and convergence of the given schemes in the grid $L_2$ - norm with the rate equal to the order of the approximation error. The achieved results are supported by the numerical computations performed for some test problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.