Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Traveling waves for the porous medium equation in the incompressible limit: asymptotic behavior and nonlinear stability (2108.10563v1)

Published 24 Aug 2021 in math.AP

Abstract: In this study, we analyze the behavior of monotone traveling waves of a one-dimensional porous medium equation modeling mechanical properties of living tissues. We are interested in the asymptotics where the pressure, which governs the diffusion process and limits the creation of new cells, becomes very stiff, and the porous medium equation degenerates towards a free boundary problem of Hele-Shaw type. This is the so-called incompressible limit. The solutions of the limit Hele-Shaw problem then couple "free dynamics" with zero pressure, and "incompressible dynamics" with positive pressure and constant density. In the first part of the work, we provide a refined description of the traveling waves for the porous medium equation in the vicinity of the transition between the free domain and the incompressible domain. The second part of the study is devoted to the analysis of the stability of the traveling waves. We prove that the linearized system enjoys a spectral gap property in suitable weighted $L2$ spaces, and we give quantitative estimates on the rate of decay of solutions. The nonlinear terms are treated perturbatively, using an $L\infty$ control stemming from the maximum principle. As a consequence, we prove that traveling waves are stable under small perturbations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.