Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Scattering on the line via singular approximation (2108.09799v3)

Published 22 Aug 2021 in math.AP, math-ph, and math.MP

Abstract: Motivated by applications to acoustic imaging, the present work establishes a framework to analyze scattering for the one-dimensional wave, Helmholtz, Schr\"odinger and Riccati equations that allows for coefficients which are more singular than can be accommodated by previous theory. In place of the standard scattering matrix or the Weyl-Titchmarsh $m$-function, the analysis centres on a new object, the generalized reflection coefficient, which maps frequency (or the spectral parameter) to automorphisms of the Poincar\'e disk. Purely singular versions of the generalized reflection coefficient, which are amenable to direct analysis, serve to approximate the general case. Orthogonal polynomials on both the unit circle and unit disk play a key technical role, as does an exotic Riemannian structure on PSL$(2,\mathbb{R})$. A central role is also played by the newly-defined harmonic exponential operator, introduced to mediate between impedance (or index of refraction) and the reflection coefficient. The approach leads to new, explicit formulas and effective algorithms for both forward and inverse scattering. The algorithms may be viewed as nonlinear analogues of the FFT. In addition, the scattering relation is shown to be elementary in a precise sense at or below the critical threshold of continuous impedance. For discontinuous impedance, however, the reflection coefficient ceases to decay at infinity, the classical trace formula breaks down, and the scattering relation is complicated by the emergence of almost periodic structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.