A Partial Order on Preference Profiles (2108.08465v2)
Abstract: We propose a theoretical framework under which preference profiles can be meaningfully compared. Specifically, given a finite set of feasible allocations and a preference profile, we first define a ranking vector of an allocation as the vector of all individuals' rankings of this allocation. We then define a partial order on preference profiles and write "$P \geq P{'}$", if there exists an onto mapping $\psi$ from the Pareto frontier of $P{'}$ onto the Pareto frontier of $P$, such that the ranking vector of any Pareto efficient allocation $x$ under $P{'}$ is weakly dominated by the ranking vector of the image allocation $\psi(x)$ under $P$. We provide a characterization of the maximal and minimal elements under the partial order. In particular, we illustrate how an individualistic form of social preferences can be maximal in a specific setting. We also discuss how the framework can be further generalized to incorporate additional economic ingredients.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.